
© 2018 JETIR May 2018, Volume 5, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR1805541 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 720

3
rd

ORDER CIC DECIMATION FILTER DESIGN &

IMPLEMENTATION
1
Mir Mohammad Burhan,

2
Nadeem Tariq Beigh,

3
Sandeep Kr. Singh

1
Student, Sharda University,

2
Student, Sharda University,

3
Assistant Professor, Sharda University

1, 2, 3
Department of Electronics & Communication

1, 2, 3
Sharda University, Greater Noida, UP, India

Abstract: In this paper the design of 3
rd

 order decimation filter with a decimation factor 16 is presented using the FDA tool of DSP

system toolbox of MATLAB. The filter is realized using Simulink. The filter is optimized for the size of adders and subtractors in terms of

the word length by reducing the word length of consecutive adders to save area and computational complexity. The designed filter is

converted to a Verilog RTL using the HDL coder in MATLAB. This filter is implemented in Xilinx and simulated in ISIM simulator for

white noise, impulse and step response for 1000 samples. An optimized Verilog RTL implementation of the same filter is also presented.

This optimized code is less complex and understandable and has the same functionality with lesser resource utilization.

Index Terms – Decimation filters, CIC filters, Verilog RTL, Filter design, Filter implementation.

__

I. INTRODUCTION

Delta-sigma analog-to-digital converters (ADCs) are among the most popular converters that are suitable for low-to-medium speed and high

resolution applications such as communications systems, weighing scales and precision measurement applications. These converters use

clock oversampling along with noise-shaping to achieve high signal-to-noise ratio (SNR) and, thus, higher effective number of bits (ENOB).

Noise-shaping occurs when noise is pushed to higher frequencies that are out of the band of interest. When the out-of-band noise is chopped

off, SNR increases. After noise-shaping, the sampling rate is reduced back to its Nyquist rate by means of decimation filters. In fact, delta-

sigma converters can be partitioned into two main building blocks: modulator and decimation filters. With a good understanding of these

building blocks you can arrive at a robust and efficient design. Each of these main building blocks, in turn, is made of several different

building blocks themselves. Unlike conventional converters that sample the analog input signal at Nyquist frequency or slightly higher,

delta-sigma modulators, regardless of their order, sample the input data at rates that are much higher than Nyquist rate. The oversampling

ratio (OSR) usually is expressed in the form of 2m, where m=1, 2, 3… The modulator is an analog block in nature that needs little accuracy

in its components. Thus, the burden of design can be pushed onto the decimation filter. The most important role of a decimation filter is to

decrease the sampling rate by discarding every few samples. Presented in this article is a quick overview of decimation filters, along with

their operation and requirements. Their requirements are based on the order of the delta-sigma modulator used in the converter, along with

the overall number of bits being output by the ADC. [2]

II. DIGITAL DECIMATION FILTER

The decimation filter described in this paper is used in the field of instrumentation. At first, a bit-stream with the rate of 3.2 KHz is generated

by a delta-sigma modulator which is over-sampled by 16. Then, the bit-stream passes through a decimation filter, where it is down-sampled

to a signal bandwidth of, which has a pass-band ripple of 0.001dB, and the resolution of output is bits. Multiplier takes up most of the chip

area and power consumption. But the cascaded-integrator-comb (CIC) filter requires neither multiplier nor coefficient storage, therefore they

are widely used in decimation filters.[5]

CIC filter is a very simple digital filter, which is also the Finite Impulse Response (FIR). The transfer function of it is given below:

 () ∑

 ()

The research shows that the stop-band attenuation of CIC filter cannot meet the practical application. How to improve its stop-band

attenuation? We can use the modified form of transfer function, which is given below.

 () (

∑)

 (

) ()

In this function, N is the normalization factor which represents the decimation factor, and K is the CIC filter’s order. The stop-band

attenuation is fold-increase with K and the edge of pass-band becomes steeper, so the characteristics of the filter become better. In this paper,

N=16.

In the CIC filter, K- the order of the transfer function determines the ability of noise suppression at zeros, and it has a certain relation with

the output of the modulator. Noise Power Spectrum Density of the modulator is given by (3)

 () ̂√ (()) ()
L represents the modulator’s order and represents the sampling period of the analog modulator, and ̂ represents quantization error. If

the order of the CIC filter, K, is equal to the order of the modulator, L, the Noise Power Spectrum Density of the signal that output of the

CIC filter is shown by (4)

 () ̂√ (()) ()

If K=L+1, the Noise Power Spectrum Density of the signal that output of the CIC filter is given by (5)

 () ̂√ (())
 ()

 ()
 ()

http://www.jetir.org/

© 2018 JETIR May 2018, Volume 5, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR1805541 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 721

Compare with (3), (4) and (5), it is not difficult to find that the change of Noise Power Spectrum Density after the down-sample by CIC

filter is very small when K=L+1. From (5), we can find that with the increase of K, the performance of the output signal becomes better,

but it will make hardware consumption largely increased. So we make K=L+1=3 in our design. The transfer function is given below. [3]

Fig.1: Hongernauer decimation filter.[4]

 () (

∑)

 (

) ()

A proper structure can effectively reduce the power consumption and area. As we studied, there are four popular structures [1]. Figure 2

presents the more efficient structures, which are Hongernauer CIC structure and multi-rate structure. They have different advantages. For

example, the advantage of the first one is when over-sampling rate grows up area will change with it; and the advantage of the second one

is when the over-sampling rate grows up and the word length becomes small, the power consumption will be down, in this paper, we use

Hongernauer CIC structure.[6]

Fig.2: Multi rate structure.[4]

III. DESIGN OF DECIMATION FILTER

In this paper the 3
rd

 order CIC decimator with a decimation factor of 16 is presented. The filter is designed using MATLAB Simulink

FDA tool and implemented using Verilog RTL. The designed filter is compared with another CIC Verilog implementation for resource

utilization. Given below is the parameter specification of the filter designed using the Simulink FDA tool. The Verilog code for the filter

is given in Appendix. The Frequency – Phase response and the Pole-Zero plot is given below as obtaoned from the FDA tool.

Table 1: Filter specifications.

Parameter Value

Filter Structure Cascaded Integrator Comb

Decimation factor 16

Differential Delay 1

Number of sections 3

Stable Yes

Linear Phase Yes (Type 2)

Number of Multipliers 0

Number of Adders 6

Number of States 6

Multiplicatins per input sample 0

Additions per input sample 3.186

Sampling Frequency 3.2Khz

Wordlengths [21 20 19 19 17 16]

Fig.3: Frequency – Phase response of the filter

http://www.jetir.org/

© 2018 JETIR May 2018, Volume 5, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR1805541 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 722

Fig.4: Pole-Zero plot of the filter.

It can be seen that the pass band gain of the filter is around 70 dB and the phase is linear over this region with a range of -6 to – 20

degrees. The PZ plot has all zeros on the unit circle with a poles at the origin. The generated Simulink model is given below with three

integrators and three differentiators connected with a down sample switch of 16. [8]

Fig.5: Simulink model of the filter.

Fig.6: Simulation output.

http://www.jetir.org/

© 2018 JETIR May 2018, Volume 5, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR1805541 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 723

Fig.7: Technology Schematics.

 Table 2: Synthesis Report. Table 3: Design Statistics

An optimized decimation filter code is presented in Appendix, with the simulation output

and other parameters given below.

Fig. 8: Output Simulation of optimized filter.

Adders/Subtractors 6

17-bit subtractor 1

18-bit subtractor 1

20-bit adder 1

20-bit subtractor 1

21-bit adder 1

22-bit adder 1

Counters 1

4-bit up counter 1

Registers 3

Flip-Flops 3

IOs 36

Cell Usage

BELS

AND2 206

AND3 7

AND4 1

INV 136

OR2 197

OR3 6

XOR2 217

Flip

Flops/Latches

FDC 1

FDCE 176

IO Buffers

IBUF 12

OBUF 17

http://www.jetir.org/

© 2018 JETIR May 2018, Volume 5, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR1805541 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 724

Fig.9: Technology schematics of optimized filter.

 Table 4: Synthesis Report. Table 5: Design statistics

IV. CONCLUSION

In this paper the design of 3
rd

 order decimation filter with a decimation factor 16 was presented using the FDA tool of DSP system toolbox of

MATLAB. The filter was realized using Simulink. The filter was optimized for the size of adders and subtractors in terms of the word length

by reducing the word length of consecutive adders to save area and computational complexity. The designed filter was converted to a

Verilog RTL using the HDL coder in MATLAB. This filter was implemented in Xilinx and simulated in ISIM simulator for white noise,

impulse and step reponse for 1000 samples. An optimized Verilog RTL implementation of the same filter was also presented. This optimized

code is less complex and understandable and has the same functionality with lesser resource utilization as verified by the tables given above.

The area utilization in terms of I/O buffers is 1/3
rd

 .the cell usage reduces considerably aby an amount of around 600.Ths reducing the area

by about 64%.This shows that the MATLAB generated HDL code is less efficient as compared to the presented code.

REFERENCES

[1] Bibin John, Fabian Wagner and Wolfgang H. Krautschneider, 2010. "Comparison of Decimation Filter Architectures for a Sigma-Delta

Analog to Digital Converter", TUHH Telematics.

[2] Arash loloee, 2014. “Exploring Decimation Filters”, Journal of High Frequency Electronics”, 31-40.

[3] Kiran Agarwal Gupta, Tejashree Patil, 2017. “Low Pass Reconfigurable Decimation Filter Architecture for 3.8 MHz Frequency”, 2nd

IEEE International Conference on Recent Trends in Electronics Information & Communication Technology (RTEICT) India.

[4] Karuna Grover, Rajesh Mehra, Chandani, 2017. “FPGA Based Decimator Using Fully Parallel Technique for Hearing Aid

Applications”, 3rd IEEE International Conference on "Computational Intelligence and Communication Technology".

[5] Ricardo Garcia Baez, Gordana Jovanovic Dolecek, 2016. “Modified Comb Decimation Filter: Design and Implementation”, IEEE 59th

International Midwest Symposium on Circuits and Systems (MWSCAS) Abu Dhabi UAE.

[6] YongSheng Wang, YaQin Ru, Yang Liu, Xiao Zhou, Shan Li, Bei Cao, XiaoWei Liu, 2016. “An Area-Efficient Multi-Bit Sigma-Delta

modulator”, IEEE.

[7] Latha Raja Gopal, 2016. "Power and Area Efficient Decimation Filter Architectures of Wireless Receivers", Springer.

[8] Nasir Nabi Hurrah, Zubair Jan, Anil Bhardwaj, Shabir Ahmad Parah, Amit Kant Pandit, 2015. “Oversampled Sigma Delta ADC

Decimation Filter: Design Techniques, Challenges, Trade-offs and Optimization”, Proceedings of 2015 RAECS UIET Panjab University

Chandigarh 21-22nd December 2015.

[9] K.Shanthi, Dr.B.K.Madhavi, 2015. “Implementation of Optimized Cascaded Integrator Comb Filters for Digital Up, Down

Conversions”, International Journal of Science Engineering and Technology Research (IJSETR), Vol 4, Issue 7.

[10] Sudhir Rao Rupanagudi, Varsha G. Bhat, Hemalatha S.G., Bhavana N., Archana M., Chandrika B. V., Ashwini R., Keerti G. Torvi,

Darshan S. R., Abhilash B.G., Anil K.S., Vinayak Swamy K. M, 2014.“Design of a Low Power Digital Down Converter for 802.16m –

4G WiMAX on FPGA”, International Conference on Advances in Computing, Communications and Informatics (ICACCI).

Adders/Subtractors 6

17-bit subtractor 1

18-bit subtractor 1

20-bit adder 1

20-bit subtractor 1

21-bit adder 1

22-bit adder 1

Counters 1

4-bit up counter 1

Tristates 1

8-bit Tristates 1

IOs 12

Cell Usage

BELS

AND2 13

AND8 1

INV 2

XOR2 14

XOR2 14

Flip Flops/Latches

FDC 16

IO Buffers

IBUF 4

OBUFE 8

http://www.jetir.org/

© 2018 JETIR May 2018, Volume 5, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR1805541 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 725

[11] Suraj R. Gaikwad, Gopal S. Gawande, 2014."Design and Implementation of Efficient FIR Filter Structures using Xilinx System

Generator", International Journal of scientific research and management (IJSRM).

APPENDIX

Verilog RTL code of CIC decimation filter designed by MATLAB HDL Coder.

MODULE DECIMATION_16

 (

 CLK, CLK_ENABLE, RESET, FILTER_IN, FILTER_OUT,

CE_OUT

);

 INPUT CLK; INPUT CLK_ENABLE; INPUT RESET; INPUT

SIGNED [15:0] FILTER_IN; //SFIX16_EN15

 OUTPUT SIGNED [15:0] FILTER_OUT; OUTPUT CE_OUT;

//

//MODULE ARCHITECTURE: DECIMATION_16

//

 REG [3:0] CUR_COUNT; // UFIX4

 WIRE PHASE_1; // BOOLEAN

 WIRE CE_DELAYLINE; // BOOLEAN

 REG INT_DELAY_PIPE [0:1]; // BOOLEAN

 WIRE CE_GATED; // BOOLEAN

 REG CE_OUT_REG; // BOOLEAN

 //

 REG SIGNED [15:0] INPUT_REGISTER; // SFIX16_EN15

 // -- SECTION 1 SIGNALS

 WIRE SIGNED [15:0] SECTION_IN1; // SFIX16_EN15

 WIRE SIGNED [20:0] SECTION_CAST1; // SFIX21_EN8

 WIRE SIGNED [20:0] SUM1; // SFIX21_EN8

 REG SIGNED [20:0] SECTION_OUT1; // SFIX21_EN8

 WIRE SIGNED [20:0] ADD_CAST; // SFIX21_EN8

 WIRE SIGNED [20:0] ADD_CAST_1; // SFIX21_EN8

 WIRE SIGNED [21:0] ADD_TEMP; // SFIX22_EN8

 // -- SECTION 2 SIGNALS

 WIRE SIGNED [20:0] SECTION_IN2; // SFIX21_EN8

 WIRE SIGNED [19:0] SECTION_CAST2; // SFIX20_EN7

 WIRE SIGNED [19:0] SUM2; // SFIX20_EN7

 REG SIGNED [19:0] SECTION_OUT2; // SFIX20_EN7

 WIRE SIGNED [19:0] ADD_CAST_2; // SFIX20_EN7

 WIRE SIGNED [19:0] ADD_CAST_3; // SFIX20_EN7

 WIRE SIGNED [20:0] ADD_TEMP_1; // SFIX21_EN7

 // -- SECTION 3 SIGNALS

 WIRE SIGNED [19:0] SECTION_IN3; // SFIX20_EN7

 WIRE SIGNED [18:0] SECTION_CAST3; // SFIX19_EN6

 WIRE SIGNED [18:0] SUM3; // SFIX19_EN6

 REG SIGNED [18:0] SECTION_OUT3; // SFIX19_EN6

 WIRE SIGNED [18:0] ADD_CAST_4; // SFIX19_EN6

 WIRE SIGNED [18:0] ADD_CAST_5; // SFIX19_EN6

 WIRE SIGNED [19:0] ADD_TEMP_2; // SFIX20_EN6

 // -- SECTION 4 SIGNALS

 WIRE SIGNED [18:0] SECTION_IN4; // SFIX19_EN6

 REG SIGNED [18:0] DIFF1; // SFIX19_EN6

 WIRE SIGNED [18:0] SECTION_OUT4; // SFIX19_EN6

 WIRE SIGNED [18:0] SUB_CAST; // SFIX19_EN6

 WIRE SIGNED [18:0] SUB_CAST_1; // SFIX19_EN6

 WIRE SIGNED [19:0] SUB_TEMP; // SFIX20_EN6

 REG SIGNED [18:0] CIC_PIPELINE4; // SFIX19_EN6

 // -- SECTION 5 SIGNALS

 WIRE SIGNED [18:0] SECTION_IN5; // SFIX19_EN6

 WIRE SIGNED [16:0] SECTION_CAST5; // SFIX17_EN4

 REG SIGNED [16:0] DIFF2; // SFIX17_EN4

 WIRE SIGNED [16:0] SECTION_OUT5; // SFIX17_EN4

 WIRE SIGNED [16:0] SUB_CAST_2; // SFIX17_EN4

 WIRE SIGNED [16:0] SUB_CAST_3; // SFIX17_EN4

 WIRE SIGNED [17:0] SUB_TEMP_1; // SFIX18_EN4

 REG SIGNED [16:0] CIC_PIPELINE5; // SFIX17_EN4

 // -- SECTION 6 SIGNALS

 WIRE SIGNED [16:0] SECTION_IN6; // SFIX17_EN4

 WIRE SIGNED [15:0] SECTION_CAST6; // SFIX16_EN3

 REG SIGNED [15:0] DIFF3; // SFIX16_EN3

 WIRE SIGNED [15:0] SECTION_OUT6; // SFIX16_EN3

 WIRE SIGNED [15:0] SUB_CAST_4; // SFIX16_EN3

 WIRE SIGNED [15:0] SUB_CAST_5; // SFIX16_EN3

 WIRE SIGNED [16:0] SUB_TEMP_2; // SFIX17_EN3

 REG SIGNED [15:0] OUTPUT_REGISTER; // SFIX16_EN3

 // ------------------ CE OUTPUT GENERATION ------------------

 ALWAYS @ (POSEDGE CLK OR POSEDGE RESET)

 BEGIN: CE_OUTPUT

 IF (RESET == 1'B1) BEGIN

 CUR_COUNT <= 4'B0000;

 END

 ELSE BEGIN

 IF (CLK_ENABLE == 1'B1) BEGIN

 IF (CUR_COUNT == 4'B1111) BEGIN

 CUR_COUNT <= 4'B0000;

 END

 ELSE BEGIN

 CUR_COUNT <= CUR_COUNT + 1;

 END

 END

 END

 END // CE_OUTPUT

 ASSIGN PHASE_1 = (CUR_COUNT == 4'B0001 && CLK_ENABLE ==
1'B1)? 1: 0;

 ALWAYS @ (POSEDGE CLK OR POSEDGE RESET)

 BEGIN: CE_DELAY

 IF (RESET == 1'B1) BEGIN

 INT_DELAY_PIPE [0] <= 1'B0;

 INT_DELAY_PIPE [1] <= 1'B0;

 END

 ELSE BEGIN

 IF (PHASE_1 == 1'B1) BEGIN

 INT_DELAY_PIPE [1] <= INT_DELAY_PIPE [0];

 INT_DELAY_PIPE [0] <= CLK_ENABLE;

 END

 END

 END // CE_DELAY

 ASSIGN CE_DELAYLINE = INT_DELAY_PIPE [1];

 ASSIGN CE_GATED = CE_DELAYLINE & PHASE_1;

 // ------------------ CE OUTPUT REGISTER ------------------

 ALWAYS @ (POSEDGE CLK OR POSEDGE RESET)

 BEGIN: CE_OUTPUT_REGISTER

 IF (RESET == 1'B1) BEGIN

 CE_OUT_REG <= 1'B0;

 END

 ELSE BEGIN

 CE_OUT_REG <= CE_GATED;

 END

 END // CE_OUTPUT_REGISTER

 // ------------------ INPUT REGISTER -----------------

 ALWAYS @ (POSEDGE CLK OR POSEDGE RESET)

 BEGIN: INPUT_REG_PROCESS

 IF (RESET == 1'B1) BEGIN

 INPUT_REGISTER <= 0;

 END

 ELSE BEGIN

 IF (CLK_ENABLE == 1'B1) BEGIN

 INPUT_REGISTER <= FILTER_IN;

 END

 END

 END // INPUT_REG_PROCESS

 // ------------------ SECTION # 1: INTEGRATOR ------------------

 ASSIGN SECTION_IN1 = INPUT_REGISTER;

 ASSIGN SECTION_CAST1 = $SIGNED ({{12{SECTION_IN1 [15]}},

SECTION_IN1 [15:7]});

 ASSIGN ADD_CAST = SECTION_CAST1;

 ASSIGN ADD_CAST_1 = SECTION_OUT1;

 ASSIGN ADD_TEMP = ADD_CAST + ADD_CAST_1;

 ASSIGN SUM1 = ADD_TEMP [20:0];

 ALWAYS @ (POSEDGE CLK OR POSEDGE RESET)

 BEGIN: INTEGRATOR_DELAY_SECTION1

 IF (RESET == 1'B1) BEGIN

 SECTION_OUT1 <= 0;

 END

 ELSE BEGIN

 IF (CLK_ENABLE == 1'B1) BEGIN

 SECTION_OUT1 <= SUM1;

 END

 END

 END // INTEGRATOR_DELAY_SECTION1

 // ------------------ SECTION # 2: INTEGRATOR ------------------

 ASSIGN SECTION_IN2 = SECTION_OUT1;

 ASSIGN SECTION_CAST2 = SECTION_IN2 [20:1];

 ASSIGN ADD_CAST_2 = SECTION_CAST2;

http://www.jetir.org/

© 2018 JETIR May 2018, Volume 5, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR1805541 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 726

 ASSIGN ADD_CAST_3 = SECTION_OUT2;

 ASSIGN ADD_TEMP_1 = ADD_CAST_2 + ADD_CAST_3;

 ASSIGN SUM2 = ADD_TEMP_1 [19:0];

 ALWAYS @ (POSEDGE CLK OR POSEDGE RESET)

 BEGIN: INTEGRATOR_DELAY_SECTION2

 IF (RESET == 1'B1) BEGIN

 SECTION_OUT2 <= 0;

 END

 ELSE BEGIN

 IF (CLK_ENABLE == 1'B1) BEGIN

 SECTION_OUT2 <= SUM2;

 END

 END

 END // INTEGRATOR_DELAY_SECTION2

 // ------------------ SECTION # 3: INTEGRATOR ------------------

 ASSIGN SECTION_IN3 = SECTION_OUT2;

 ASSIGN SECTION_CAST3 = SECTION_IN3 [19:1];

 ASSIGN ADD_CAST_4 = SECTION_CAST3;

 ASSIGN ADD_CAST_5 = SECTION_OUT3;

 ASSIGN ADD_TEMP_2 = ADD_CAST_4 + ADD_CAST_5;

 ASSIGN SUM3 = ADD_TEMP_2 [18:0];

 ALWAYS @ (POSEDGE CLK OR POSEDGE RESET)

 BEGIN: INTEGRATOR_DELAY_SECTION3

 IF (RESET == 1'B1) BEGIN

 SECTION_OUT3 <= 0;

 END

 ELSE BEGIN

 IF (CLK_ENABLE == 1'B1) BEGIN

 SECTION_OUT3 <= SUM3;

 END

 END

 END // INTEGRATOR_DELAY_SECTION3

 // ------------------ SECTION # 4: COMB ------------------

 ASSIGN SECTION_IN4 = SECTION_OUT3;

 ASSIGN SUB_CAST = SECTION_IN4;

 ASSIGN SUB_CAST_1 = DIFF1;

 ASSIGN SUB_TEMP = SUB_CAST - SUB_CAST_1;

 ASSIGN SECTION_OUT4 = SUB_TEMP [18:0];

 ALWAYS @ (POSEDGE CLK OR POSEDGE RESET)

 BEGIN: COMB_DELAY_SECTION4

 IF (RESET == 1'B1) BEGIN

 DIFF1 <= 0;

 END

 ELSE BEGIN

 IF (PHASE_1 == 1'B1) BEGIN

 DIFF1 <= SECTION_IN4;

 END

 END

 END // COMB_DELAY_SECTION4

 ALWAYS @ (POSEDGE CLK OR POSEDGE RESET)

 BEGIN: CIC_PIPELINE_PROCESS_SECTION4

 IF (RESET == 1'B1) BEGIN

 CIC_PIPELINE4 <= 0;

 END

 ELSE BEGIN

 IF (PHASE_1 == 1'B1) BEGIN

 CIC_PIPELINE4 <= SECTION_OUT4;

 END

 END

 END // CIC_PIPELINE_PROCESS_SECTION4

 // ------------------ SECTION # 5: COMB ------------------

 ASSIGN SECTION_IN5 = CIC_PIPELINE4;

 ASSIGN SECTION_CAST5 = SECTION_IN5 [18:2];

 ASSIGN SUB_CAST_2 = SECTION_CAST5;

 ASSIGN SUB_CAST_3 = DIFF2;

 ASSIGN SUB_TEMP_1 = SUB_CAST_2 - SUB_CAST_3;

 ASSIGN SECTION_OUT5 = SUB_TEMP_1 [16:0];

 ALWAYS @ (POSEDGE CLK OR POSEDGE RESET)

 BEGIN: COMB_DELAY_SECTION5

 IF (RESET == 1'B1) BEGIN

 DIFF2 <= 0;

 END

 ELSE BEGIN

 IF (PHASE_1 == 1'B1) BEGIN

 DIFF2 <= SECTION_CAST5;

 END

 END

 END // COMB_DELAY_SECTION5

 ALWAYS @ (POSEDGE CLK OR POSEDGE RESET)

 BEGIN: CIC_PIPELINE_PROCESS_SECTION5

 IF (RESET == 1'B1) BEGIN

 CIC_PIPELINE5 <= 0;

 END

 ELSE BEGIN

 IF (PHASE_1 == 1'B1) BEGIN

 CIC_PIPELINE5 <= SECTION_OUT5;

 END

 END

 END // CIC_PIPELINE_PROCESS_SECTION5

 // ------------------ SECTION # 6: COMB ------------------

 ASSIGN SECTION_IN6 = CIC_PIPELINE5;

 ASSIGN SECTION_CAST6 = SECTION_IN6 [16:1];

 ASSIGN SUB_CAST_4 = SECTION_CAST6;

 ASSIGN SUB_CAST_5 = DIFF3;

 ASSIGN SUB_TEMP_2 = SUB_CAST_4 - SUB_CAST_5;

 ASSIGN SECTION_OUT6 = SUB_TEMP_2 [15:0];

 ALWAYS @ (POSEDGE CLK OR POSEDGE RESET)

 BEGIN: COMB_DELAY_SECTION6

 IF (RESET == 1'B1) BEGIN

 DIFF3 <= 0;

 END

 ELSE BEGIN

 IF (PHASE_1 == 1'B1) BEGIN

 DIFF3 <= SECTION_CAST6;

 END

 END

 END // COMB_DELAY_SECTION6

 // ------------------ OUTPUT REGISTER ------------------

 ALWAYS @ (POSEDGE CLK OR POSEDGE RESET)

 BEGIN: OUTPUT_REG_PROCESS

 IF (RESET == 1'B1) BEGIN

 OUTPUT_REGISTER <= 0;

 END

 ELSE BEGIN

 IF (PHASE_1 == 1'B1) BEGIN

 OUTPUT_REGISTER <= SECTION_OUT6;

 END

 END

 END // OUTPUT_REG_PROCESS

 // ASSIGNMENT STATEMENTS

 ASSIGN CE_OUT = CE_OUT_REG;

 ASSIGN FILTER_OUT = OUTPUT_REGISTER;

ENDMODULE // DECIMATION_16

Verilog RTL code for the optimized decimation filter

MODULE SINC_IMLEMENTATION (

DSM_I, DSM_CLK_I, WORDCLK_I, RESET_I, DWORD_RO);
INPUT DSM_CLK_I; // DSM-RATE CLOCK (BIT CLOCK)

INPUT WORDCLK_I; // OUTPUT WORD-RATE CLOCK

INPUT RESET_I; // ACTIVE-HI RESET
INPUT DSM_I; // INPUT FROM MODULATOR

OUTPUT [15:0] DWORD_RO; // 16-BIT OUTPUT WORD

REG [20:0] ACC1_R; REG [19:0] ACC2_R;
REG [18:0] ACC3_R; REG [18:0] ACC3_Q2_R;

REG [18:0] DIFF1_R; REG [16:0] DIFF2_R;

REG [15:0] DIFF3_R; REG [18:0] DIFF1_Q1_R;

REG [16:0] DIFF2_Q2_R; REG [15:0] DWORD_RO;

REG [15:0] TEMP;

//REG [7:0] WORD_COUNT;

//
// INTERNAL WIRES

//

// 2'S-COMP VERSION OF DWORD
WIRE [20:0] DWORD_2COMP_W;

// SINC FILTER

ASSIGN DWORD_2COMP_W = (DSM_I==1'B0)? 21’D0: 21'D1;
// ACCUMULATOR (INTEGRATOR)

ALWAYS @ (NEGEDGE DSM_CLK_I OR POSEDGE RESET_I)

BEGIN
IF (RESET_I)

BEGIN

/* INITIALIZE ACC REGISTERS ON RESET_I */
ACC1_R<=21'D0;

ACC2_R<=20'D0;

ACC3_R<=19'D0;
END

ELSE

BEGIN
/* PERFORM ACCUMULATION PROCESS */

http://www.jetir.org/

© 2018 JETIR May 2018, Volume 5, Issue 5 www.jetir.org (ISSN-2349-5162)

JETIR1805541 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 727

ACC1_R<=ACC1_R + DWORD_2COMP_W;

ACC2_R<=ACC2_R + ACC1_R;

ACC3_R<=ACC3_R + ACC2_R;
END

END

//
// DIFFERENTIATOR AND DECIMATION

//

ALWAYS @ (POSEDGE WORDCLK_I OR POSEDGE RESET_I)
BEGIN

IF (RESET_I)

 BEGIN
ACC3_Q2_R<=19'D0;

DIFF1_Q1_R<=19'D0;

DIFF2_Q2_R<=17'D0;
DIFF1_R<=19'D0;

DIFF2_R<=17'D0;

DIFF3_R<=16'D0;
TEMP<=16'D0;

END

ELSE
BEGIN

DIFF1_R<= ACC3_R - ACC3_Q2_R;

DIFF2_R<=DIFF1_R - DIFF1_Q1_R;
DIFF3_R<=DIFF2_R - DIFF2_Q2_R;

ACC3_Q2_R<=ACC3_R;

DIFF1_Q1_R<=DIFF1_R;
DIFF2_Q2_R<=DIFF2_R;

TEMP<=DIFF3_R;
DWORD_RO<=TEMP;

END

END
ENDMODULE

http://www.jetir.org/

